Big Data and Apache Spark

Framework Introduction
Content

- Introduction
- Spark Install
- Spark Modules
- Spark Terminology
- Data Models
- Deployment
- Monitoring Jobs
- Common mistakes
What is Apache Spark?
Introduction

- original author Andrei Zaharia at the University of California
- project later donated to and maintained by Apache
- open source general cluster-computing framework
- better performance compared to Hadoop's MapReduce framework
- written in Scala with support for Scala, Java, Python, R

https://spark.apache.org/
https://github.com/apache/spark
Introduction – Apache Hadoop's MapReduce Model
Introduction – Hadoop's MapReduce Model vs Spark
Introduction – Apache Hadoop Architecture
Introduction – Apache Hadoop Architecture

HDFS Architecture

Metadata (Name, replicas, ...): /home/foo/data, 3, ...

Client

Read

Datanodes

Block ops

Datanodes

Replication

Write

Rack 1

Rack 2

Blocks
Introduction – Apache Hadoop's MapReduce Model

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• simple model of programming</td>
<td>• simple model of programming – is not always easy to implement solutions as</td>
</tr>
<tr>
<td>• scalable</td>
<td>MapReduce</td>
</tr>
<tr>
<td>• cost-effectiveness</td>
<td>• jobs run in isolation</td>
</tr>
<tr>
<td></td>
<td>• result are not computed in real time</td>
</tr>
<tr>
<td></td>
<td>• usually more than one MapReduce jobs run in a sequence – writing intermediary steps to disk</td>
</tr>
</tbody>
</table>
Introduction – Apache Spark vs Apache Hadoop MapReduce

PageRank Performance

- Hadoop: 171 ± 14
- Basic Spark: 72
- Spark + Controlled Partitioning: 23

Logistic Regression Performance

- Hadoop: 127 s
- Spark: 174 s (first iteration)
 - Further iterations: 6 s
Install
Spark Install

- Java 1.7 or higher
- Scala 2.10 or higher
- Scala Build Tool (SBT)
- download Spark from https://spark.apache.org/downloads.html
- check installation by opening spark-shell from spark_home/bin/spark-shell

- install IntelliJ Idea + Scala Plugin + Sbt Plugin
- set in build.sbt Spark dependencies
Modules
Apache Spark - Modules

- Spark Core
- Spark SQL
- Spark Streaming
- MLlib
- GraphX
Apache Spark - Modules

Spark Core Module
- provides task dispatching, scheduling and IO
- main abstraction RDD

Spark SQL Module
- component on top of Spark Core
- main abstraction DataFrames
- support for structured and semi-structured data

Spark Streaming Module
- data is processed in mini-batches
- latency due to the mini batch duration

GraphX Module
- distributed graph processing framework on top of Spark
- based on RDDs - not suited for update
- MapReduce style API
Apache Spark - Modules

Mllib

- distributed machine learning algorithms over Spark Core:
 - summary statistics. correlations. stratified sampling. ...
 - linear models (SVMs, logistic regression, linear regression) decision trees. naive Bayes.
 - alternating least squares (ALS)
 - k-means.
 - singular value decomposition (SVD) principal component analysis (PCA)
 - stochastic gradient descent. limited-memory BFGS (L-BFGS)
Apache Spark - Terminology

- Driver program
- Cluster Manager
- Deploy Mode
- Worker Node
- Executor
- Task
- Job
- Stage
- SparkContext
Apache Spark – Application Flow
Apache Spark – Application Flow

Client Node
- Driver JVM
- Spark Context
 - Controls spark.driver.memory RAM

Worker Node 1
- YARN Node Manager
- HDFS Datanode
- Node Memory Pool
 - (yarn.nodemanager.resource.memory-mb)

Executor JVM #1
- Task #1
 - Requires spark.task.cpus
 - Controls spark.executor.cores CPU cores and spark.executor.memory RAM
- Task #2
 - Requires spark.task.cpus
 - Controls spark.executor.cores CPU cores and spark.executor.memory RAM

Executor JVM #2
- Task #1
 - Requires spark.task.cpus
 - Controls spark.executor.cores CPU cores and spark.executor.memory RAM
- Task #2
 - Requires spark.task.cpus
 - Controls spark.executor.cores CPU cores and spark.executor.memory RAM

Worker Node N
- YARN Node Manager
- HDFS Datanode
- Node Memory Pool
 - (yarn.nodemanager.resource.memory-mb)

Executor JVM #M-1
- Task #1
 - Requires spark.task.cpus
 - Controls spark.executor.cores CPU cores and spark.executor.memory RAM
- Task #2
 - Requires spark.task.cpus
 - Controls spark.executor.cores CPU cores and spark.executor.memory RAM

Executor JVM #M
- Task #1
 - Requires spark.task.cpus
 - Controls spark.executor.cores CPU cores and spark.executor.memory RAM
- Task #2
 - Requires spark.task.cpus
 - Controls spark.executor.cores CPU cores and spark.executor.memory RAM
Data Models
Apache Spark – Data Models

- RDDs
- DataFrame
- Dataset
Apache Spark – Resilient Distributed Dataset (RDD)

- basic abstraction of Spark Core
- immutable
- is a reference to an internal parallel collection or external data set such as HDFS files, Cassandra, Hbase
- they are considered resilient because in case of failure they can be re-computated

Types of operations

- transformations
- actions
Transformations are lazy operations that create a new data set.

Narrow transformation - does not require shuffle of data across partitions.

Wide transformation - requires the data to be shuffled, for example records that need to be matched due to a join operation.
Apache Spark – Transformations

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>map(func)</td>
<td>Return a new distributed dataset formed by passing each element of the source through a function <code>func</code>.</td>
</tr>
<tr>
<td>filter(func)</td>
<td>Return a new dataset formed by selecting those elements of the source on which <code>func</code> returns true.</td>
</tr>
<tr>
<td>flatMap(func)</td>
<td>Similar to <code>map</code>, but each input item can be mapped to 0 or more output items (so <code>func</code> should return a <code>Seq</code> rather than a single item).</td>
</tr>
<tr>
<td>mapPartitions(func)</td>
<td>Similar to <code>map</code>, but runs separately on each partition (block) of the RDD, so <code>func</code> must be of type <code>Iterator<T> => Iterator<U></code> when running on an RDD of type <code>T</code>.</td>
</tr>
<tr>
<td>union(otherDataset)</td>
<td>Return a new dataset that contains the union of the elements in the source dataset and the argument.</td>
</tr>
<tr>
<td>distinct([numTasks])</td>
<td>Return a new dataset that contains the distinct elements of the source dataset.</td>
</tr>
</tbody>
</table>
Apache Spark – Transformations

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
</table>
| **`groupByKey([numTasks])`** | When called on a dataset of (K, V) pairs, returns a dataset of (K, Iterable<V>) pairs.
Note: If you are grouping in order to perform an aggregation (such as a sum or average) over each key, using `reduceByKey` or `aggregateByKey` will yield much better performance.
Note: By default, the level of parallelism in the output depends on the number of partitions of the parent RDD. You can pass an optional `numTasks` argument to set a different number of tasks. |
| **`reduceByKey(func, [numTasks])`** | When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the values for each key are aggregated using the given reduce function `func`, which must be of type (V,V) => V. Like in `groupByKey`, the number of reduce tasks is configurable through an optional second argument. |
| **`aggregateByKey(zeroValue)(seqOp, combOp, [numTasks])`** | When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values for each key are aggregated using the given combine functions and a neutral "zero" value. Allows an aggregated value type that is different than the input value type, while avoiding unnecessary allocations. Like in `groupByKey`, the number of reduce tasks is configurable through an optional second argument. |
Apache Spark - Actions

• return a value to the driver
• each action call forces the computation of an RDD.
• re-computations can be avoided when using persist.
• types of persist:

 MEMORY_ONLY
 MEMORY_AND_DISK
 MEMORY_ONLY_SER
 MEMORY_AND_DISK_SER
 DISK_ONLY
 MEMORY_ONLY_2
Apache Spark – Actions

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>reduce(func)</code></td>
<td>Aggregate the elements of the dataset using a function <code>func</code> (which takes two arguments and returns one). The function should be commutative and associative so that it can be computed correctly in parallel.</td>
</tr>
<tr>
<td><code>collect()</code></td>
<td>Return all the elements of the dataset as an array at the driver program. This is usually useful after a filter or other operation that returns a sufficiently small subset of the data.</td>
</tr>
<tr>
<td><code>count()</code></td>
<td>Return the number of elements in the dataset.</td>
</tr>
<tr>
<td><code>first()</code></td>
<td>Return the first element of the dataset (similar to <code>take(1)</code>).</td>
</tr>
<tr>
<td><code>take(n)</code></td>
<td>Return an array with the first <code>n</code> elements of the dataset.</td>
</tr>
<tr>
<td><code>takeSample(withReplacement,num, [seed])</code></td>
<td>Return an array with a random sample of <code>num</code> elements of the dataset, with or without replacement, optionally pre-specifying a random number generator seed.</td>
</tr>
</tbody>
</table>
Apache Spark – Actions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>takeOrdered(n, [ordering])</code></td>
<td>Return the first (n) elements of the RDD using either their natural order or a custom comparator.</td>
</tr>
<tr>
<td><code>saveAsTextFile(path)</code></td>
<td>Write the elements of the dataset as a text file (or set of text files) in a given directory in the local filesystem, HDFS or any other Hadoop-supported file system. Spark will call <code>toString</code> on each element to convert it to a line of text in the file.</td>
</tr>
<tr>
<td><code>saveAsSequenceFile(path)</code></td>
<td>Write the elements of the dataset as a Hadoop SequenceFile in a given path in the local filesystem, HDFS or any other Hadoop-supported file system. This is available on RDDs of key-value pairs that implement Hadoop's Writable interface. In Scala, it is also available on types that are implicitly convertible to Writable (Spark includes conversions for basic types like Int, Double, String, etc).</td>
</tr>
</tbody>
</table>

(Java and Scala)
Transformations and Actions define an application's **Direct Acyclic Graph (DAG)**.

- using the DAG a physical execution plan is defined:
 - DAG Scheduler splits the DAG into multiple stages (stages are based on transformations, narrow transf. are piped together);
 - DAG Scheduler submits the stages to the Task Scheduler.
Apache Spark – DAG Example

Sequence of Transformations and Actions

- `sc.textFile()`
- `map(line.split())`
- `map(words => (words(0), 1))`
- `reduceByKey()`

Diagram:
- HadoopRDD
- MappedRDD
- MappedRDD
- MappedRDD
- ShuffledRDD
Apache Spark – DAG Example

Sequence of Stages

Stage 1
- HadoopRDD
- MappedRDD
- MappedRDD
- MappedRDD

Stage 2
- ShuffledRDD
Apache Spark – DAG Example

Sequence of Stages/Tasks

Stage 1

Stage 2
Apache Spark – DataFrame, Datasets

Dataset
- distributed collection of data
- strong typed
- uses SQL Engine
- use Encoder for optimizing filtering, sorting and hashing without de-serializing the object

DataFrame
- is a Dataset with named columns, Dataset[Rows]
- equivalent of a relational database table
- not strongly typed

- Dataset and DataFrame were introduced in Spark 1.6
 - DataFrame API as stable
 - Dataset API as experimental

- Spark 2.X – Dataset API became stable
Apache Spark – RDD vs Dataframe

- **Dataframe**
 - uses **Catalyst** optimizer on logical plan by pushing filtering and aggregations
 - uses **Tungsten** optimizer on physical plan by optimizing memory usage

- **RDD**
 - blackbox of data
 - plan cannot be optimized
Apache Spark – Catalyst

• Spark SQL query optimizer
• used to take the query plan and transform it into an execution plan
• transformations on RDD builds an a execution DAG
• transformations on Dataframe/Datasets Optimizations builds an optimal execution Tree

• **PushPredicateThroughJoin:**
 • If you first make a join between 2 dataframes and then filter the result using
 • rules that includes only one of them, the catalyst will change the plan and
 • will first filter the dataframe and after that will make the join

• **ColumnPruning**
 • attempts to eliminate the reading of unneeded columns from the query plan

• **CombineFilters**
 • if you make filter and then you filter again the result the catalyst will make
 • firstFilter AND secondFilter in 1 step

• **SimplifyFilters**
 • If the filter condition always is true, the filter is removed
 • If the filter always is false, replace input with empty relation
Apache Spark – Catalyst

Trees: Abstractions of Users’ Programs

Query Plan

```
SELECT sum(v)
FROM (  
    SELECT  
        t1.id,  
        1 + 2 + t1.value AS v  
    FROM t1 JOIN t2  
    WHERE  
        t1.id = t2.id AND  
        t2.id > 50 * 1000) tmp
```

```
Aggregate
  sum(v)

Project
  t1.id,  
  1+2+t1.value as v

Filter
  t1.id=t2.id  
  t2.id>50*1000

Join

Scan (t1)
Scan (t2)
```
Deployment
Apache Spark - Deployment

• Standalone Deploy Mode
 • each node is defined in the Spark Configuration file

• Cloud deployment
 • Amazon EC2

• Hadoop Yarn

• Local Deployment
 is also available

Submit job via spark-submit command

```
./bin/spark-submit
  --class <main-class>
  --master <master-url>
  --deploy-mode <deploy-mode>
  --conf <key>=<value>
  ...
  # other options
  <application-jar>
  [application-arguments]
```
Monitoring Jobs
Apache Spark – Monitoring Jobs Example

Spark Jobs

Total Uptime: 12 min
Scheduling Mode: FIFO
Completed Jobs: 2

![Spark Jobs](image)

<table>
<thead>
<tr>
<th>Job Id</th>
<th>Description</th>
<th>Submitted</th>
<th>Duration</th>
<th>Stages: Succeeded/Total</th>
<th>Tasks (for all stages): Succeeded/Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>collect at <code><python-input-6-4615ba263c05>:1</code></td>
<td>2015/09/29 10:00:32</td>
<td>4 s</td>
<td>2/2</td>
<td>40/40</td>
</tr>
<tr>
<td>0</td>
<td>runJob at PythonRDD.scala:366</td>
<td>2015/09/29 10:00:27</td>
<td>4 s</td>
<td>1/1</td>
<td>1/1</td>
</tr>
</tbody>
</table>
Apache Spark – Monitoring Jobs Example

Details for Job 0

Status: SUCCEEDED
Completed Stages: 2

Completed Stages (2)

<table>
<thead>
<tr>
<th>Stage Id</th>
<th>Description</th>
<th>Submitted</th>
<th>Duration</th>
<th>Tasks: Succeeded/Total</th>
<th>Input</th>
<th>Output</th>
<th>Shuffle Read</th>
<th>Shuffle Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>collect at <console>:26+details</td>
<td>2015/06/17 07:43:19</td>
<td>1.0 s</td>
<td>2/2</td>
<td></td>
<td></td>
<td>73.6 KB</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>map at <console>:23+details</td>
<td>2015/06/17 07:43:17</td>
<td>2 s</td>
<td>2/2</td>
<td>209.8 KB</td>
<td></td>
<td>73.6 KB</td>
<td></td>
</tr>
</tbody>
</table>
Apache Spark – Monitoring Jobs Example
Apache Spark – Monitoring Jobs Example
Common mistakes
Apache Spark - Mistakes

- Resource allocation and level of parallelization not explored/configured properly
- Intermediary data sets are not partitioned correctly – shuffle size problem
- Skew and Cartesian
- Try to avoid shuffles, use reduceByKey instead of groupByKey
- Use tree reduce instead of reduce to transfer load to the executors instead of the driver