OneBank
One

s UniCredit

Big Data and Apache Spark

Framework Introduction

Data & Analytics
Innovative E2E Applications

Constantin Andrei Popa

21.06.2017

Welcome to

v UniCredit

Content

Introduction

Spark Install
Spark Modules
Spark Terminology
Data Models
Deployment
Monitoring Jobs

Common mistakes

What is Apache Spark?

Spa

Introduction

= original author Andrei Zaharia at the University of California

= project later donated to and maintained by Apache

= open source general cluster-computing framework

= better performance compared to Hadoop's MapReduce framework

= written in Scala with support for Scala, Java, Python, R

https://spark.apache.ord/
https://dithub.com/apache/spark

https://github.com/apache/spark
https://github.com/apache/spark

Introduction — Apache Hadoop's MapReduce Model

Shuffling Reducer
bad , 1 | .| bad . 1
Input Splits Mapping
e Final
- = : Output
Input | | good.1
Class Hadoop is
Waelcome to Hadoop
Class Hadoop is bad 1
good Hadoop is bad = Hadoop , 3 » Class 1
good 1
good Hadoop is 2::9-01: 3
to 1
=] 5 2 Welcome 1
bad /
. to. 1

image credits guru99.com r
i l

Introduction — Hadoop's MapReduce Model vs Spark

)
input |t RDD1 2 rRoD2 | 3 RDD3
Data on (in memory) (in disk) (in memory)
Disk " - - o
A
] . 9 N
Input | MR1 (Tuples MR2 Tuples MRS Tuples
Data on ~ (on Disk) (on Disk) (on Disk)
DlSk i LS = o = " =
\»__ /

MR4

! Output
‘Data on

!_ Disk

Introduction — Apache Hadoop Architecture

High Level Architecture of Hadoop

MapReduce layer

HDFS layer

Master Node Slave Node Slave Node
TaskTracker TaskTracker | TaskTracker
S/}—«
wﬁ
JobTracker
--------------------------------- 1.-0.......--0.}-1 SANSAEEARRRERN
NameNode
[e—
I e ‘
DataNode DataNode | DataNode

Introduction — Apache Hadoop Architecture

HDFS Architecture

Metada;a,,opg"" Namenode

Metadata (Name, replicas, ...):
/homeffoo/data, 3, ...

Block ops
Read Datanodes Datanodes

/ | |
O B = Replication =B =

[]] Blocks
. \ J /

N v
Rack 1 Rack 2

Introduction — Apache Hadoop's MapReduce Model

Advantages Disadvantades

* simple model of programming simple model of programming — is not

« scalable always easy to implement solutions as
MapReduce

e cost-effectiveness

* jobs run inisolation
* result are not computed in real time

* ysually more than one MapReduce jobs
run in a sequence — writing intermediary

steps to disk

Introduction — Apache Spark vs Apache Hadoop MapReduce

N
o}
o}

150
100

50

Iteration time (s)

PageRank Performance

1? & Hadoop
i Basic Spark

Spark + Controlled
Partitioning

4500
4000

© 3500 -

g 3000

= 2500
o
€ 2000

= 1500
& 1000
500

0

Logistic Regression Performance

1275/ iteration

/

& Hadoop
W Spark

- i l l ﬁrst iteration 174 s

further iterations 6 s
1

Number of Iterations

https://www.edureka.co/blog/apache-spark-vs-hadoop-mapreduce

10

7

Install

Spark Install

Java 1.7 or higher

Scala 2.10 or higher

Scala Build Tool (SBT)

download Spark from https://spark.apache.ord/downloads.html

check installation by opening spark-shell from spark_home/bin/spark-shell

install Intellij Idea + Scala Plugin + Sbt Plugin

set in build.sbt Spark dependencies

12

https://spark.apache.org/downloads.html

Modules

Apache Spark - Modules

Spark Core

Spark SQL

Spark Streaming

MLLib

GraphX

14

Apache Spark - Modules

Spark Core Module Spark Streaming Module

* provides task dispatching, scheduling data is processed in mini-batches
and 10 « latency due to the mini batch

e main abstraction RDD duration

Spark SQL Module GraphX Module

e component on top of Spark Core e distributed graph processing

* main abstraction DataFrames framework on top of Spark

« support for structured and semi- * based on RDDs - not suited for update
structured data * MapReduce style API

: 7

Apache Spark - Modules

Mllib
e distributed machine learning algorithms over Spark Core:
e summary statistics. correlations. stratified sampling. ...

* linear models (SVMs, logistic regression, linear regression) decision trees. naive

Bayes.
* alternating least squares (ALS)
* k-means.
* singular value decomposition (SVD) principal component analysis (PCA)

* stochastic gradient descent. limited-memory BFGS (L-BFGS)

16

Apache Spark - Terminology

* Driver program
 Cluster Manader
* Deploy Mode

* Worker Node

* Executor

e Task

* Job

* Stage

* SparkContext

17

Apache Spark — Application Flow

Spark driver

Job

Executor

Executor

Task

Executor

Task

18

Apache Spark — Application Flow

Client Node
Driver JVM

Spark Context

Controls spark.driver.memory RAM

Worker Node 1 Worker Node N
Node Memory Pool Node Memory Pool
(varn.nodemanager.resource.memory-mb) (yarn.nodemanager.resource.memory-mb)
Executor JVM #1 Executor JVM #M-1
Task #1 Task #2 Task #1 Task #2
Requires spark.task.cous || Requires spark.task.cous L Requires spark.task.cpus || Requires spark.task.cpus
Controls spark.executor.cores CPU cores and Controls spark.executor.cores CPU cores and
spark.executor.memory RAM spark.executor.memory RAM
Executor JVM #2 Executor JVM #M
Task #1 Task #2 Task #1 Task #2
Requires spark.task.cpus || Requires spark.task.cous Requires spark.task.cpus || Requires spark.task.cpus
Controls spark.executor.cores CPU cores and Controls spark.executor.cores CPU cores and
spark.executor.memory RAM spark.executor.memory RAM

19

Apache Spark — Data Models

Data Models

Spa

Apache Spark — Data Models

* RDDs

 DataFrame

* Dataset

21

Apache Spark — Resilient Distributed Dataset (RDD)

basic abstraction of Spark Core

immutable

is a reference to an internal parallel collection or external data set such as HDFS files,

Cassandra, Hbase

they are considered resilient because in case of failure they can be re-computated

Types of operations
* transformations

e actions

. 7

Apache Spark - Transformations

Transformations are lazy operations that create a new data set.

Narrow transformation - does not require shuffle of data across partitions.

Wide transformation - requires the data to be shuffled, for example records that need to be

matched due to a join operation.

"Narrow" deps: "Wide" (shuffle) deps:
- - (@ |
map, filter - groupByKey

= (@
| S =
‘ T::-in with
| - inputs co- .
union partitioned join with inputs not

co-partitioned

23

Apache Spark — Transformations

map(func)

filter(func)

flatMap(func)

mapPartitions(func)

union(otherDataset)

distinct([numTasks]))

Return a new distributed dataset formed by passing each element of the
source through a function func.

Return a new dataset formed by selecting those elements of the source
on which funcreturns true.

Similar to map, but each input item can be mapped to 0 or more output
items (so funcshould return a Seq rather than a single item).

Similar to map, but runs separately on each partition (block) of the RDD,
so func must be of type Iterator<T> => Iterator<U> when running on an
RDD of type T.

Return a new dataset that contains the union of the elements in the
source dataset and the argument.

Return a new dataset that contains the distinct elements of the source
dataset.

24

>

Apache Spark — Transformations

groupByKey([numTasks])

reduceByKey(func, [numTasks])

aggregateByKey(zeroValue)(seqOp, com
bOp, [numTasks])

When called on a dataset of (K, V) pairs, returns a dataset of (K, Iterable<V>)
pairs.

Note: If you are grouping in order to perform an aggredation (such as a sum or
average) over each key, using reduceByKey or aggregateByKey will yield much
better performance.

Note: By default, the level of parallelism in the output depends on the number of
partitions of the parent RDD. You can pass an optional numTasks argument to set
a different number of tasks.

When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the
values for each key are aggregated using the given reduce function func, which
must be of type (V,V) => V. Like in groupByKey, the number of reduce tasks is
configurable through an optional second argument.

When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the
values for each key are aggregated using the given combine functions and a
neutral "zero" value. Allows an aggredgated value type that is different than the
input value type, while avoiding unnecessary allocations. Like in groupByKey, the
number of reduce tasks is configurable through an optional second argument.

25

>

Apache Spark - Actions

return a value to the driver

each action call forces the computation of an RDD.

types of persist:

MEMORY_ONLY
MEMORY_AND_DISK
MEMORY_ONLY_SER
MEMORY_AND_DISK_SER
DISK_ONLY
MEMORY_ONLY_2

re-computations can be avoided when using persist.

26

Apache Spark — Actions

reduce(func)

collect()

count()

first()

take(n)

Aggredate the elements of the dataset using a function func (which takes
two arguments and returns one). The function should be commutative and
associative so that it can be computed correctly in parallel.

Return all the elements of the dataset as an array at the driver program.
This is usually useful after a filter or other operation that returns a
sufficiently small subset of the data.

Return the number of elements in the dataset.

Return the first element of the dataset (similar to take(1)).

Return an array with the first n elements of the dataset.

takeSample(withReplacement,nReturn an array with a random sample of num elements of the dataset,

um, [seed])

with or without replacement, optionally pre-specifying a random number
denerator seed.

27

>

Apache Spark — Actions

takeOrdered(n, [ordering]) Return the first n elements of the RDD using either their natural order or a custom
comparator.

saveAsTextFile(path) Write the elements of the dataset as a text file (or set of text files) in a given
directory in the local filesystem, HDFS or any other Hadoop-supported file system.
Spark will call toString on each element to convert it to a line of text in the file.

saveAsSequenceFile(path) Write the elements of the dataset as a Hadoop SequenceFile in a given path in the
local filesystem, HDFS or any other Hadoop-supported file system. This is

(Java and Scala) available on RDDs of key-value pairs that implement Hadoop's Writable interface.
In Scala, it is also available on types that are implicitly convertible to Writable
(Spark includes conversions for basic types like Int, Double, String, etc).

eg a

Apache Spark - DAG

 Transformations and Actions define an application's Direct Acyclic Graph (DAG).
* using the DAG a physical execution plan is defined:

» DAG Scheduler splits the DAG into multiple stages (stages are based on transformations,

narrow transf. are piped together);

* DAG Scheduler submits the stades to the Task Scheduler.

: 7

Apache Spark — DAG Example

Sequence of Transformations and Actions

sc.textFile()

map(line.split())

map(words =>
(words(0), 1))

reduceByKey()

HadoopRDD

Y

MappedRDD

Y

MappedRDD

i

MappedRDD

Y

ShuffledRDD

30

Apache Spark — DAG Example

Stage 1

Stage 2

Sequence of Stages

HadoopRDD

Li

MappedRDD

i

MappedRDD

Y

MappedRDD

E:::::: :::::*.'.'.'.'.'.'.'.'.'.'.'.E

31

Apache Spark — DAG Example

Sequence of Stages/Tasks

mooo
Y
L

T 1 7 3

Stage 1

Stage 2

32

Apache Spark — DataFrame, Datasets

Dataset
* distributed collection of data
* strong typed
e uses SQL Engine
* use Encoder for optimizing filtering, sorting and hashing without de-serializing the object

DataFrame
* is a Dataset with named columns, Dataset[Rows]
* equivalent of a relational database table
* not strongly typed

Dataset and DataFrame were introduced In Spark 1.6
* DataFrame API as stable
* Dataset API as experimental

Spark 2.X — Dataset API became stable

ss a

Apache Spark — RDD vs Dataframe

e Dataframe
 uses Catalyst optimizer on logical plan by pushing filtering and aggredations

* uses Tungsten optimizer on physical plan by optimizing memory usade

 RDD
* blackbox of data

* plan cannot be optimized

34

Apache Spark - Catalyst

Spark SQL query optimizer
used to take the query plan and transform it into an execution plan
transformations on RDD builds an a execution DAG
transformations on Dataframe/Datasets Optimizations builds an optimal execution Tree
PushPredicateThroughJoin:

* If you first make a join between 2 dataframes and then filter the result using

* rules that includes only one of them, the catalyst will change the plan and

* will first filter the dataframe and after that will make the join
ColumnPruning

 attempts to eliminate the reading of unneeded columns from the query plan
CombineFilters

* if you make filter and then you filter again the result the catalyst will make

* firstFilter AND secondFilter in 1 step
SimplifyFilters

* If the filter condition always is true, the filter is removed

* If the filter always is false, replace input with empty relation

35

Apache Spark - Catalyst

Trees: Abstractions of Users’ Programs

sum(v)

Query Plan v

SELECT sum(v) ~~ t1.id,

FROM (o sammamm—m T i ::ﬁvaahn
SELECT ===="""
tl.id, tl.id=t2.id

Filter 3 *
1+2 +tl.value AS v PLA0710m

NHERE ------------ -
t1.id = t2.id AND
t2.id > 50 * 1000) tmp

@dalabricks

image credit: databricks
36

Apache Spark

Deployment

Spa

Apache Spark - Deployment

Standalone Deploy Mode
 each node is defined in the Spark Configuration file

Cloud deployment

* Amazon (2 Submit job via spark-submit command

Jbin/spark-submit\
--class <main-class>\
-~-master <master-url>\
--deploy-mode <deploy-mode> \
--conf <key>=<value>\
is also available .. # other options
<application-jar>\
[application-arguments]

Hadoop Yarn

Local Deployment

47

38

Apache Spark

Monitoring Jobs

Spa

Apache Spark — Monitoring Jobs Example

Spari{ e Jobs Stages Storage

Spark Jobs ()

Total Uptime: 12 min
Scheduling Mode: FIFO
Completed Jobs: 2

Event Timeline

Completed Jobs (2)
Job
Id Description Submitted
1 2015/09/29
10:00:32
0 rundob at PythonRDD.scala:366 2015/09/29
10:00:27

Environment Executors

Stages:
Duration Succeeded/Total
48 2/2
48 11

Tasks (for all stages):
Succeeded/Total

40

Apache Spark — Monitoring Jobs Example

& 2 C A [3192168.221.130:4040/jobs/job/?id=0 B & « =
M Saa Jobs Stages Storage Environment Executors
Details for Job 0

Status: SUCCEEDED
Completed Stages: 2

Completed Stages (2)
Stage Tasks: Shuffle Shuffle
Id Description Submitted Duration Succeeded/Total Input Output Read Write
1 collect at 201506/17 1.0s S 736
<console>26+details 07.43:19 KB
0 map at 2015/06/17 2S B 2098 736
<console>23+detalls 07:43:17 KB KB

u %

Apache Spark — Monitoring Jobs Example

& = C & [0 192.168.221.130:4040/executors/ B & =

M - Jaobs Slages Slorage Ernvinanment Execulars

Executors (1)

Memorny: 446.3 KB Used (2460 MB Total)
Disk: 0.0 B Used

Executor RDD Memory Disk Active Failed Complete Total Task Shuffle Shuffle Thread
[] Address Blocks Used Used Tasks Tasks Tasks Tasks Time Input Read Write Dump
=grver= localhest ool 2 4453 aog o 0 4 4 465 2096 00B ra.6 I hread
KB/ KB KB Ciurmp
245.0
B

. s

Apache Spark — Monitoring Jobs Example

Details for Job 4

Status: SUCCEEDED
Completed Stages: 22
Skipped Stages: 4

» Event Timeline
~ DAG Visualization

Stage 10 iskippad) Stage 11 (skipped) Stage 12 (skippad) Stage 13 [skoped) Stage 14 Stage 15 Stage 16

paralielize groupByKey paralolize groupByKey ‘groupdyKey groupSiykey groupBytay

userinBlocks [12] userinBlocks [12]

rea| itions mag n; rtticns map join
Q0
map jein
uns. mapValies
fein

43

Apache Spark

Common mistakes

Spa

Apache Spark - Mistakes

Resource allocation and level of parallelization not explored/configured properly
Intermediary data sets are not partitioned correctly — shuffle size problem

Skew and Carthesian

Try to avoid shuffles, use reduceByKey instead of groupByKey

Use tree reduce instead of reduce to transfer load to the executors instead of the driver

45

