
Data & Analytics

Innovative E2E Applications

21.06.2017

Constantin Andrei Popa

Framework Introduction

Big Data and Apache Spark



2

• Introduction

• Spark Install

• Spark Modules

• Spark Terminology

• Data Models

• Deployment

• Monitoring Jobs

• Common mistakes

Content



3

What is Apache Spark?



4

 original author Andrei Zaharia at the University of California

 project later donated to and maintained by Apache

 open source general cluster-computing framework

 better performance compared to Hadoop's MapReduce framework

 written in Scala with support for Scala, Java, Python, R

Introduction

https://spark.apache.org/
https://github.com/apache/spark

https://github.com/apache/spark
https://github.com/apache/spark


image credits guru99.com
5

Introduction – Apache Hadoop's MapReduce Model



6

Introduction – Hadoop's MapReduce Model vs Spark



7

Introduction – Apache Hadoop Architecture



8

Introduction – Apache Hadoop Architecture



9

Introduction – Apache Hadoop's MapReduce Model

Advantages

• simple model of programming

• scalable

• cost-effectiveness

Disadvantages

• simple model of programming – is not 

always easy to implement solutions as 

MapReduce

• jobs run in isolation

• result are not computed in real time

• usually more than one MapReduce jobs 

run in a sequence – writing intermediary 

steps to disk



https://www.edureka.co/blog/apache-spark-vs-hadoop-mapreduce
10

Introduction – Apache Spark vs Apache Hadoop MapReduce



11

Install



12

Spark Install

• Java 1.7 or higher

• Scala 2.10 or higher

• Scala Build Tool (SBT)

• download Spark from https://spark.apache.org/downloads.html

• check installation by opening spark-shell from spark_home/bin/spark-shell

• install Intellij Idea + Scala Plugin + Sbt Plugin

• set in build.sbt Spark dependencies

https://spark.apache.org/downloads.html


13

Modules



14

Apache Spark - Modules

• Spark Core

• Spark SQL

• Spark Streaming

• MLlib

• GraphX



15

Apache Spark - Modules

Spark Core Module

• provides task dispatching, scheduling 

and IO

• main abstraction RDD

Spark SQL Module

• component on top of Spark Core

• main abstraction DataFrames

• support for structured and semi-

structured data

Spark Streaming Module

• data is processed in mini-batches

• latency due to the mini batch 

duration

GraphX Module

• distributed graph processing 

framework on top of Spark

• based on RDDs - not suited for update

• MapReduce style API



16

Apache Spark - Modules

Mllib

• distributed machine learning algorithms over Spark Core:

• summary statistics. correlations. stratified sampling. ...

• linear models (SVMs, logistic regression, linear regression) decision trees. naive 

Bayes.

• alternating least squares (ALS)

• k-means.

• singular value decomposition (SVD) principal component analysis (PCA)

• stochastic gradient descent. limited-memory BFGS (L-BFGS)



17

Apache Spark - Terminology

• Driver program

• Cluster Manager

• Deploy Mode

• Worker Node

• Executor

• Task

• Job

• Stage

• SparkContext



18

Apache Spark – Application Flow



19

Apache Spark – Application Flow



20

Data Models

Apache Spark – Data Models



21

• RDDs

• DataFrame

• Dataset

Apache Spark – Data Models



22

Apache Spark – Resilient Distributed Dataset (RDD)

• basic abstraction of Spark Core

• immutable

• is a reference to an internal parallel collection or external data set such as HDFS files, 

Cassandra, Hbase

• they are considered resilient because in case of failure they can be re-computated

Types of operations

• transformations

• actions



23

Transformations are lazy operations that create a new data set.

Narrow transformation - does not require shuffle of data across partitions.

Wide transformation - requires the data to be shuffled, for example records that need to be 

matched due to a join operation.

Apache Spark - Transformations



24

Apache Spark – Transformations

map(func) Return a new distributed dataset formed by passing each element of the 
source through a function func.

filter(func) Return a new dataset formed by selecting those elements of the source 
on which funcreturns true.

flatMap(func) Similar to map, but each input item can be mapped to 0 or more output 
items (so funcshould return a Seq rather than a single item).

mapPartitions(func) Similar to map, but runs separately on each partition (block) of the RDD, 
so func must be of type Iterator<T> => Iterator<U> when running on an 
RDD of type T.

union(otherDataset) Return a new dataset that contains the union of the elements in the 
source dataset and the argument.

distinct([numTasks])) Return a new dataset that contains the distinct elements of the source 
dataset.



25

Apache Spark – Transformations

groupByKey([numTasks]) When called on a dataset of (K, V) pairs, returns a dataset of (K, Iterable<V>) 
pairs.
Note: If you are grouping in order to perform an aggregation (such as a sum or 
average) over each key, using reduceByKey or aggregateByKey will yield much 
better performance.

Note: By default, the level of parallelism in the output depends on the number of 
partitions of the parent RDD. You can pass an optional numTasks argument to set 
a different number of tasks.

reduceByKey(func, [numTasks]) When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the 
values for each key are aggregated using the given reduce function func, which 
must be of type (V,V) => V. Like in groupByKey, the number of reduce tasks is 
configurable through an optional second argument.

aggregateByKey(zeroValue)(seqOp, com
bOp, [numTasks])

When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the 
values for each key are aggregated using the given combine functions and a 
neutral "zero" value. Allows an aggregated value type that is different than the 
input value type, while avoiding unnecessary allocations. Like in groupByKey, the 
number of reduce tasks is configurable through an optional second argument.



26

• return a value to the driver

• each action call forces the computation of an RDD.

• re-computations can be avoided when using persist.

• types of persist:

MEMORY_ONLY

MEMORY_AND_DISK

MEMORY_ONLY_SER

MEMORY_AND_DISK_SER

DISK_ONLY

MEMORY_ONLY_2

Apache Spark - Actions



27

Apache Spark – Actions

reduce(func) Aggregate the elements of the dataset using a function func (which takes 
two arguments and returns one). The function should be commutative and 
associative so that it can be computed correctly in parallel.

collect() Return all the elements of the dataset as an array at the driver program. 
This is usually useful after a filter or other operation that returns a 
sufficiently small subset of the data.

count() Return the number of elements in the dataset.

first() Return the first element of the dataset (similar to take(1)).

take(n) Return an array with the first n elements of the dataset.

takeSample(withReplacement,n
um, [seed])

Return an array with a random sample of num elements of the dataset, 
with or without replacement, optionally pre-specifying a random number 
generator seed.



28

Apache Spark – Actions

takeOrdered(n, [ordering]) Return the first n elements of the RDD using either their natural order or a custom 
comparator.

saveAsTextFile(path) Write the elements of the dataset as a text file (or set of text files) in a given 
directory in the local filesystem, HDFS or any other Hadoop-supported file system. 
Spark will call toString on each element to convert it to a line of text in the file.

saveAsSequenceFile(path) Write the elements of the dataset as a Hadoop SequenceFile in a given path in the 
local filesystem, HDFS or any other Hadoop-supported file system. This is 
available on RDDs of key-value pairs that implement Hadoop's Writable interface. 
In Scala, it is also available on types that are implicitly convertible to Writable 
(Spark includes conversions for basic types like Int, Double, String, etc).

(Java and Scala)



29

• Transformations and Actions define an application's Direct Acyclic Graph (DAG).

• using the DAG a physical execution plan is defined:

• DAG Scheduler splits the DAG into multiple stages (stages are based on transformations, 

narrow transf. are piped together);

• DAG Scheduler submits the stages to the Task Scheduler.

Apache Spark - DAG



30

Apache Spark – DAG Example

Sequence of Transformations and Actions



31

Apache Spark – DAG Example

Sequence of Stages



32

Apache Spark – DAG Example

Sequence of Stages/Tasks



33

Apache Spark – DataFrame, Datasets

• Dataset

• distributed collection of data

• strong typed

• uses SQL Engine

• use Encoder for optimizing filtering, sorting and hashing without de-serializing the object

• DataFrame

• is a Dataset with named columns, Dataset[Rows]

• equivalent of a relational database table

• not strongly typed

• Dataset and DataFrame were introduced In Spark 1.6

• DataFrame API as stable

• Dataset API as experimental

• Spark 2.X – Dataset API became stable



34

Apache Spark – RDD vs Dataframe

• Dataframe

• uses Catalyst optimizer on logical plan by pushing filtering and aggregations

• uses Tungsten optimizer on physical plan by optimizing memory usage

• RDD

• blackbox of data

• plan cannot be optimized



35

Apache Spark – Catalyst

• Spark SQL query optimizer

• used to take the query plan and transform it into an execution plan

• transformations on RDD builds an a execution DAG

• transformations on Dataframe/Datasets Optimizations builds an optimal execution Tree

• PushPredicateThroughJoin:

• If you first make a join between 2 dataframes and then filter the result using

• rules that includes only one of them, the catalyst will change the plan and 

• will first filter the dataframe and after that will make the join

• ColumnPruning

• attempts to eliminate the reading of unneeded columns from the query plan

• CombineFilters

• if you make filter and then you filter again the result the catalyst will make 

• firstFilter AND secondFilter in 1 step

• SimplifyFilters

• If the filter condition always is true, the filter is removed

• If the filter always is false, replace input with empty relation



image credit: databricks
36

Apache Spark – Catalyst



37

Deployment

Apache Spark



38

• Standalone Deploy Mode

• each node is defined in the Spark Configuration file

• Cloud deployment

• Amazon EC2

• Hadoop Yarn

• Local Deployment 

is also available

Apache Spark - Deployment



39

Monitoring Jobs

Apache Spark



40

Apache Spark – Monitoring Jobs Example



41

Apache Spark – Monitoring Jobs Example



42

Apache Spark – Monitoring Jobs Example



43

Apache Spark – Monitoring Jobs Example



44

Common mistakes

Apache Spark



45

Apache Spark - Mistakes

• Resource allocation and level of parallelization not explored/configured properly

• Intermediary data sets are not partitioned correctly – shuffle size problem

• Skew and Carthesian

• Try to avoid shuffles, use reduceByKey instead of groupByKey

• Use tree reduce instead of reduce to transfer load to the executors instead of the driver


